Automatic abstraction and fault tolerance in cortical microachitectures

Author:

Hashmi Atif1,Berry Hugues2,Temam Olivier3,Lipasti Mikko1

Affiliation:

1. University of Wisconsin, Madison, WI, USA

2. INRIA Rhone-Alpes, Villeurbanne, France

3. INRIA Saclay, Orsay, France

Abstract

Recent advances in the neuroscientific understanding of the brain are bringing about a tantalizing opportunity for building synthetic machines that perform computation in ways that differ radically from traditional Von Neumann machines. These brain-like architectures, which are premised on our understanding of how the human neocortex computes, are highly fault-tolerant, averaging results over large numbers of potentially faulty components, yet manage to solve very difficult problems more reliably than traditional algorithms. A key principle of operation for these architectures is that of automatic abstraction: independent features are extracted from highly disordered inputs and are used to create abstract invariant representations of the external entities. This feature extraction is applied hierarchically, leading to increasing levels of abstraction at higher levels in the hierarchy. This paper describes and evaluates a biologically plausible computational model for this process, and highlights the inherent fault tolerance of the biologically-inspired algorithm. We introduce a stuck-at fault model for such cortical networks, and describe how this model maps to hardware faults that can occur on commodity GPGPU cores used to realize the model in software. We show experimentally that the model software implementation can intrinsically preserve its functionality in the presence of faulty hardware, without requiring any reprogramming or recompilation. This model is a first step towards developing a comprehensive and biologically plausible understanding of the computational algorithms and microarchitecture of computing systems that mimic the human cortex, and to applying them to the robust implementation of tasks on future computing systems built of faulty components.

Publisher

Association for Computing Machinery (ACM)

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3