Shallow binding in Lisp 1.5

Author:

Baker Henry G.1

Affiliation:

1. Massachusetts Institute of Technology, Cambridge

Abstract

Shallow binding is a scheme which allows the value of a variable to be accessed in a bounded amount of computation. An elegant model for shallow binding in Lisp 1.5 is presented in which context-switching is an environment tree transformation called rerooting. Rerooting is completely general and reversible, and is optional in the sense that a Lisp 1.5 interpreter will operate correctly whether or not rerooting is invoked on every context change. Since rerooting leaves assoc [ v, a ] invariant, for all variables v and all environments a , the programmer can have access to a rerooting primitive, shallow[], which gives him dynamic control over whether accesses are shallow or deep, and which affects only the speed of execution of a program, not its semantics. In addition, multiple processes can be active in the same environment structure, so long as rerooting is an indivisible operation. Finally, the concept of rerooting is shown to combine the concept of shallow binding in Lisp with Dijkstra's display for Algol and hence is a general model for shallow binding.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Compiler and runtime support for continuation marks;Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation;2020-06-06

2. Copy-on-write in the PHP language;ACM SIGPLAN Notices;2009-01-21

3. Delimited dynamic binding;ACM SIGPLAN Notices;2006-09-16

4. Higher-Order Code Splicing;Programming Languages and Systems;1999

5. The COMFY 6502 compiler;ACM SIGPLAN Notices;1997-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3