Data Quality

Author:

Sadiq Shazia1,Dasu Tamraparni2,Dong Xin Luna3,Freire Juliana4,Ilyas Ihab F.5,Link Sebastian6,Miller Miller J.7,Naumann Felix8,Zhou Xiaofang1,Srivastava Divesh2

Affiliation:

1. The University of Queensland, Queensland, Australia

2. AT&T Labs-Research, Bedminster, NJ, USA

3. Amazon, Seattle, WA, USA

4. New York University, NYC, NY, USA

5. University of Waterloo, Waterloo, Canada

6. The University of Auckland, Auckland, New Zealand

7. University of Toronto, Toronto, Canada

8. Hasso Plattner Institute, University of Potsdam, Potsdam, Germany

Abstract

We outline a call to action for promoting empiricism in data quality research. The action points result from an analysis of the landscape of data quality research. The landscape exhibits two dimensions of empiricism in data quality research relating to type of metrics and scope of method. Our study indicates the presence of a data continuum ranging from real to synthetic data, which has implications for how data quality methods are evaluated. The dimensions of empiricism and their inter-relationships provide a means of positioning data quality research, and help expose limitations, gaps and opportunities.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems,Software

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Use of Context in Data Quality Management: a Systematic Literature Review;Journal of Data and Information Quality;2024-06-17

2. Applications and Challenges for Large Language Models: From Data Management Perspective;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

3. Data distribution tailoring revisited: cost-efficient integration of representative data;The VLDB Journal;2024-04-12

4. On tuning parameters guiding similarity computations in a data deduplication pipeline for customers records;Information Systems;2024-03

5. Data Engineering Challenges in AI automation;2023 International Conference on Computing, Electronics & Communications Engineering (iCCECE);2023-08-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3