The iBench integration metadata generator

Author:

Arocena Patricia C.1,Glavic Boris2,Ciucanu Radu3,Miller Renée J.1

Affiliation:

1. University of Toronto

2. Illinois Institute of Technology

3. University of Oxford

Abstract

Given the maturity of the data integration field it is surprising that rigorous empirical evaluations of research ideas are so scarce. We identify a major roadblock for empirical work - the lack of comprehensive metadata generators that can be used to create benchmarks for different integration tasks. This makes it difficult to compare integration solutions, understand their generality, and understand their performance. We present iBench, the first metadata generator that can be used to evaluate a wide-range of integration tasks (data exchange, mapping creation, mapping composition, schema evolution, among many others). iBench permits control over the size and characteristics of the metadata it generates (schemas, constraints, and mappings). Our evaluation demonstrates that iBench can efficiently generate very large, complex, yet realistic scenarios with different characteristics. We also present an evaluation of three mapping creation systems using iBench and show that the intricate control that iBench provides over metadata scenarios can reveal new and important empirical insights. iBench is an open-source, extensible tool that we are providing to the community. We believe it will raise the bar for empirical evaluation and comparison of data integration systems.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. To prompt or not to prompt: Navigating the use of Large Language Models for integrating and modeling heterogeneous data;Data & Knowledge Engineering;2024-07

2. Gen-T: Table Reclamation in Data Lakes;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

3. Semi-Oblivious Chase Termination for Linear Existential Rules: An Experimental Study;Proceedings of the VLDB Endowment;2023-07

4. ForBackBench;Proceedings of the VLDB Endowment;2022-04

5. The Space-Efficient Core of Vadalog;ACM Transactions on Database Systems;2022-03-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3