Beyond Cross-Section

Author:

Santini Thiago1,Rech Paolo2,Nazar Gabriel Luca2,Wagner Flávio Rech2

Affiliation:

1. Federal University of Rio Grande do Sul

2. Federal University of Rio Grande do Sul, Porto Alegre, Brazil

Abstract

A computational system employed in safety-critical applications typically has reliability as a primary concern. Thus, the designer focuses on minimizing the device radiation-sensitive area, often leading to performance degradation. In this article, we present a mathematical model to evaluate system reliability in spatial (i.e., radiation-sensitive area) and temporal (i.e., performance) terms and prove that minimizing radiation-sensitive area does not necessarily maximize application reliability. To support our claim, we present an empirical counterexample where application reliability is improved even if the radiation-sensitive area of the device is increased. An extensive radiation test campaign using a 28 nm commercial-off-the-shelf ARM-based SoC was conducted, and experimental results demonstrate that, while executing the considered application at military aircraft altitude, the probability of executing a two-year mission workload without failures is increased by 5.85% if L1 caches are enabled (thus increasing the radiation-sensitive area) when compared to no cache level being enabled. However, if both L1 and L2 caches are enabled, the probability is decreased by 31.59%.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3