Adaptive Online One-Class Support Vector Machines with Applications in Structural Health Monitoring

Author:

Anaissi Ali1ORCID,Khoa Nguyen Lu Dang2,Rakotoarivelo Thierry2,Alamdari Mehrisadat Makki3,Wang Yang2

Affiliation:

1. The University of Sydney, Camperdown, NSW, Australia

2. DATA61 | CSIRO, Eveleigh, NSW, Australia

3. School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia

Abstract

One-class support vector machine (OCSVM) has been widely used in the area of structural health monitoring, where only data from one class (i.e., healthy) are available. Incremental learning of OCSVM is critical for online applications in which huge data streams continuously arrive and the healthy data distribution may vary over time. This article proposes a novel adaptive self-advised online OCSVM that incrementally tunes the kernel parameter and decides whether a model update is required or not. As opposed to existing methods, this novel online algorithm does not rely on any fixed threshold, but it uses the slack variables in the OCSVM to determine which new data points should be included in the training set and trigger a model update. The algorithm also incrementally tunes the kernel parameter of OCSVM automatically based on the spatial locations of the edge and interior samples in the training data with respect to the constructed hyperplane of OCSVM. This new online OCSVM algorithm was extensively evaluated using synthetic data and real data from case studies in structural health monitoring. The results showed that the proposed method significantly improved the classification error rates, was able to assimilate the changes in the positive data distribution over time, and maintained a high damage detection accuracy in all case studies.

Funder

Australian Government through the Department of Communications and the Australian Research Council through the ICT Centre of Excellence Program

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3