Tailor : Altering Skip Connections for Resource-Efficient Inference

Author:

Weng Olivia1ORCID,Marcano Gabriel1ORCID,Loncar Vladimir2ORCID,Khodamoradi Alireza3ORCID,G Abarajithan1ORCID,Sheybani Nojan1ORCID,Meza Andres1ORCID,Koushanfar Farinaz1ORCID,Denolf Kristof3ORCID,Duarte Javier Mauricio1ORCID,Kastner Ryan1ORCID

Affiliation:

1. University of California San Diego, USA

2. Massachusetts Institute of Technology, USA

3. AMD, USA

Abstract

Deep neural networks use skip connections to improve training convergence. However, these skip connections are costly in hardware, requiring extra buffers and increasing on- and off-chip memory utilization and bandwidth requirements. In this article, we show that skip connections can be optimized for hardware when tackled with a hardware-software codesign approach. We argue that while a network’s skip connections are needed for the network to learn, they can later be removed or shortened to provide a more hardware-efficient implementation with minimal to no accuracy loss. We introduce Tailor , a codesign tool whose hardware-aware training algorithm gradually removes or shortens a fully trained network’s skip connections to lower the hardware cost. Tailor improves resource utilization by up to 34% for block random access memories (BRAMs), 13% for flip-flops (FFs), and 16% for look-up tables (LUTs) for on-chip, dataflow-style architectures. Tailor increases performance by 30% and reduces memory bandwidth by 45% for a two-dimensional processing element array architecture.

Funder

National Science Foundation Graduate Research Fellowship Program

National Science Foundation

U.S. Department of Energy

Office of Science, Office of Advanced Scientific Computing Research

DOE Office of Science, Office of High Energy Physics Early Career Research Program

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference52 articles.

1. 2023. Tailor. https://github.com/oliviaweng/tailor

2. Fast convolutional neural networks on FPGAs with hls4ml

3. MLPerf tiny benchmark;Banbury Colby;arXiv preprint arXiv:2106.07597,2021

4. Learning long-term dependencies with gradient descent is difficult

5. Hendrik Borras et al. 2022. Open-source FPGA-ML codesign for the MLPerf tiny benchmark. In Workshop on Benchmarking Machine Learning Workloads on Emerging Hardware (MLBench). arXiv:2206.11791 [cs.LG].

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3