Management of Multilevel, Multiclient Cache Hierarchies with Application Hints

Author:

Yadgar Gala1,Factor Michael2,Li Kai3,Schuster Assaf1

Affiliation:

1. Technion--Israel Institute of Technology

2. IBM Haifa Research Lab

3. Princeton University

Abstract

Multilevel caching, common in many storage configurations, introduces new challenges to traditional cache management: data must be kept in the appropriate cache and replication avoided across the various cache levels. Additional challenges are introduced when the lower levels of the hierarchy are shared by multiple clients. Sharing can have both positive and negative effects. While data fetched by one client can be used by another client without incurring additional delays, clients competing for cache buffers can evict each other’s blocks and interfere with exclusive caching schemes. We present a global noncentralized, dynamic and informed management policy for multiple levels of cache, accessed by multiple clients. Our algorithm, MC 2 , combines local, per client management with a global, system-wide scheme, to emphasize the positive effects of sharing and reduce the negative ones. Our local management scheme, Karma , uses readily available information about the client’s future access profile to save the most valuable blocks, and to choose the best replacement policy for them. The global scheme uses the same information to divide the shared cache space between clients, and to manage this space. Exclusive caching is maintained for nonshared data and is disabled when sharing is identified. Previous studies have partially addressed these challenges through minor changes to the storage interface. We show that all these challenges can in fact be addressed by combining minor interface changes with smart allocation and replacement policies. We show the superiority of our approach through comparison to existing solutions, including LRU, ARC, MultiQ, LRU-SP, and Demote, as well as a lower bound on optimal I/O response times. Our simulation results demonstrate better cache performance than all other solutions and up to 87% better performance than LRU on representative workloads.

Funder

Israel Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. FIFO queues are all you need for cache eviction;Proceedings of the 29th Symposium on Operating Systems Principles;2023-10-23

2. Push-Down Trees: Optimal Self-Adjusting Complete Trees;IEEE/ACM Transactions on Networking;2022-12

3. Prism-SSD: A Flexible Storage Interface for SSDs;IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems;2021

4. Superconvergence of discontinuous Galerkin method for neutral delay differential equations;International Journal of Computer Mathematics;2020-11-22

5. Understanding the effect of data center resource disaggregation on production DBMSs;Proceedings of the VLDB Endowment;2020-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3