Understanding the effect of data center resource disaggregation on production DBMSs

Author:

Zhang Qizhen1,Cai Yifan2,Chen Xinyi1,Angel Sebastian1,Chen Ang3,Liu Vincent1,Loo Boon Thau1

Affiliation:

1. University of Pennsylvania

2. ShanghaiJiao Tong University

3. Rice University

Abstract

Resource disaggregation is a new architecture for data centers in which resources like memory and storage are decoupled from the CPU, managed independently, and connected through a high-speed network. Recent work has shown that although disaggregated data centers (DDCs) provide operational benefits, applications running on DDCs experience degraded performance due to extra network latency between the CPU and their working sets in main memory. DBMSs are an interesting case study for DDCs for two main reasons: (1) DBMSs normally process data-intensive workloads and require data movement between different resource components; and (2) disaggregation drastically changes the assumption that DBMSs can rely on their own internal resource management. We take the first step to thoroughly evaluate the query execution performance of production DBMSs in disaggregated data centers. We evaluate two popular open-source DBMSs (MonetDB and PostgreSQL) and test their performance with the TPC-H benchmark in a recently released operating system for resource disaggregation. We evaluate these DBMSs with various configurations and compare their performance with that of single-machine Linux with the same hardware resources. Our results confirm that significant performance degradation does occur, but, perhaps surprisingly, we also find settings in which the degradation is minor or where DDCs actually improve performance.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DiStore: A Fully Memory Disaggregation Friendly Key-Value Store with Improved Tail Latency and Space Efficiency;Proceedings of the 53rd International Conference on Parallel Processing;2024-08-12

2. Optimizing LSM-based indexes for disaggregated memory;The VLDB Journal;2024-06-19

3. DEX: Scalable Range Indexing on Disaggregated Memory;Proceedings of the VLDB Endowment;2024-06

4. Scalable Distributed Inverted List Indexes in Disaggregated Memory;Proceedings of the ACM on Management of Data;2024-05-29

5. NVMe-oPF: Designing Efficient Priority Schemes for NVMe-over-Fabrics with Multi-Tenancy Support;2024 IEEE International Parallel and Distributed Processing Symposium (IPDPS);2024-05-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3