Teaching Johnny not to fall for phish

Author:

Kumaraguru Ponnurangam1,Sheng Steve1,Acquisti Alessandro1,Cranor Lorrie Faith1,Hong Jason1

Affiliation:

1. Carnegie Mellon University

Abstract

Phishing attacks, in which criminals lure Internet users to Web sites that spoof legitimate Web sites, are occurring with increasing frequency and are causing considerable harm to victims. While a great deal of effort has been devoted to solving the phishing problem by prevention and detection of phishing emails and phishing Web sites, little research has been done in the area of training users to recognize those attacks. Our research focuses on educating users about phishing and helping them make better trust decisions. We identified a number of challenges for end-user security education in general and anti-phishing education in particular: users are not motivated to learn about security; for most users, security is a secondary task; it is difficult to teach people to identify security threats without also increasing their tendency to misjudge nonthreats as threats. Keeping these challenges in mind, we developed an email-based anti-phishing education system called “PhishGuru” and an online game called “Anti-Phishing Phil” that teaches users how to use cues in URLs to avoid falling for phishing attacks. We applied learning science instructional principles in the design of PhishGuru and Anti-Phishing Phil. In this article we present the results of PhishGuru and Anti-Phishing Phil user studies that demonstrate the effectiveness of these tools. Our results suggest that, while automated detection systems should be used as the first line of defense against phishing attacks, user education offers a complementary approach to help people better recognize fraudulent emails and websites.

Funder

Division of Computing and Communication Foundations

Army Research Office

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 219 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3