What Will You Do for the Rest of the Day?

Author:

Sadri Amin1,Salim Flora D.1,Ren Yongli1,Shao Wei1,Krumm John C.2,Mascolo Cecilia3

Affiliation:

1. RMIT University, Computer Science and IT, School of Science, Melbourne, VIC, Australia

2. Microsoft Research, USA

3. University of Cambridge, United Kingdom

Abstract

Understanding and predicting human mobility is vital to a large number of applications, ranging from recommendations to safety and urban service planning. In some travel applications, the ability to accurately predict the user's future trajectory is vital for delivering high quality of service. The accurate prediction of detailed trajectories would empower location-based service providers with the ability to deliver more precise recommendations to users. Existing work on human mobility prediction has mainly focused on the prediction of the next location (or the set of locations) visited by the user, rather than on the prediction of the continuous trajectory (sequences of further locations and the corresponding arrival and departure times). Furthermore, existing approaches often return predicted locations as regions with coarse granularity rather than geographical coordinates, which limits the practicality of the prediction. In this paper, we introduce a novel trajectory prediction problem: given historical data and a user's initial trajectory in the morning, can we predict the user's full trajectory later in the day (e.g. the afternoon trajectory)? The predicted continuous trajectory includes the sequence of future locations, the stay times, and the departure times. We first conduct a comprehensive analysis about the relationship between morning trajectories and the corresponding afternoon trajectories, and found there is a positive correlation between them. Our proposed method combines similarity metrics over the extracted temporal sequences of locations to estimate similar informative segments across user trajectories. Our evaluation shows results on both labeled and geographical trajectories with a prediction error reduced by 10-35% in comparison to the baselines. This improvement has the potential to enable precise location services, raising usefulness to users to unprecedented levels. We also present empirical evaluations with Markov model and Long Short Term Memory (LSTM), a state-of-the-art Recurrent Neural Network model. Our proposed method is shown to be more effective when smaller number of samples are used and is exponentially more efficient than LSTM.

Funder

Australian Research Council

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Human-Computer Interaction

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3