Comparative Analysis of Supervised Classification Algorithms for Residential Water End Uses

Author:

Heydari Zahra1ORCID,Stillwell Ashlynn S.1ORCID

Affiliation:

1. Civil and Environmental Engineering University of Illinois Urbana‐Champaign Urbana IL USA

Abstract

AbstractWater sustainability in the built environment requires an accurate estimation of residential water end uses (e.g., showers, toilets, faucets, etc.). In this study, we evaluate the performance of four models (Random Forest, RF; Support Vector Machines, SVM; Logistic Regression, Log‐reg; and Neural Networks, NN) for residential water end‐use classification using actual (measured) and synthetic labeled data sets. We generated synthetic labeled data using Conditional Tabular Generative Adversarial Networks. We then utilized grid search to train each model on their respective optimized hyperparameters. The RF model exhibited the best model performance overall, while the Log‐reg model had the shortest execution times under different balanced and imbalanced (based on number of events per class) synthetic data scenarios, demonstrating a computationally efficient alternative for RF for specific end uses. The NN model exhibited high performance with the tradeoff of longer execution times compared to the other classification models. In the balanced data set scenario, all models achieved closely aligned F1‐scores, ranging from 0.83 to 0.90. However, when faced with imbalanced data reflective of actual conditions, both the SVM and Log‐reg models showed inferior performance compared to the RF and NN models. Overall, we concluded that decision tree‐based models emerge as the optimal choice for classification tasks in the context of water end‐use data. Our study advances residential smart water metering systems through creating synthetic labeled end‐use data and providing insight into the strengths and weaknesses of various supervised machine learning classifiers for end‐use identification.

Funder

National Science Foundation

Google

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3