How Good Is Multi-Pivot Quicksort?

Author:

Aumüller Martin1,Dietzfelbinger Martin2,Klaue Pascal2

Affiliation:

1. Technische Universität Ilmenau

2. Technische Universität Ilmenau, Ilmenau, Germany

Abstract

Multi-Pivot Quicksort refers to variants of classical quicksort where in the partitioning step k pivots are used to split the input into k + 1 segments. For many years, multi-pivot quicksort was regarded as impractical, but in 2009 a two-pivot approach by Yaroslavskiy, Bentley, and Bloch was chosen as the standard sorting algorithm in Sun’s Java 7. In 2014 at ALENEX, Kushagra et al. introduced an even faster algorithm that uses three pivots. This article studies what possible advantages multi-pivot quicksort might offer in general. The contributions are as follows: Natural comparison-optimal algorithms for multi-pivot quicksort are devised and analyzed. The analysis shows that the benefits of using multiple pivots with respect to the average comparison count are marginal and these strategies are inferior to simpler strategies such as the well-known median-of- k approach. A substantial part of the partitioning cost is caused by rearranging elements. A rigorous analysis of an algorithm for rearranging elements in the partitioning step is carried out, observing mainly how often array cells are accessed during partitioning. The algorithm behaves best if three to five pivots are used. Experiments show that this translates into good cache behavior and is closest to predicting observed running times of multi-pivot quicksort algorithms. Finally, it is studied how choosing pivots from a sample affects sorting cost. The study is theoretical in the sense that although the findings motivate design recommendations for multipivot quicksort algorithms that lead to running-time improvements over known algorithms in an experimental setting, these improvements are small.

Publisher

Association for Computing Machinery (ACM)

Subject

Mathematics (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Manticore: A Framework for Efficient Multiparty Computation Supporting Real Number and Boolean Arithmetic;Journal of Cryptology;2023-07

2. Generating Almost Descending Sequences to Reduce the Number of Movements in Sorting;IEEE Access;2022

3. Optimizing Complexity of Quick Sort;Communications in Computer and Information Science;2020

4. BlockQuicksort;ACM Journal of Experimental Algorithmics;2019-12-17

5. Dual-Pivot Quicksort: Optimality, Analysis and Zeros of Associated Lattice Paths;Combinatorics, Probability and Computing;2018-08-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3