Affiliation:
1. Technische Universität Ilmenau
2. Technische Universität Ilmenau, Ilmenau, Germany
Abstract
Multi-Pivot Quicksort
refers to variants of classical quicksort where in the partitioning step
k
pivots are used to split the input into
k
+ 1 segments. For many years, multi-pivot quicksort was regarded as impractical, but in 2009 a two-pivot approach by Yaroslavskiy, Bentley, and Bloch was chosen as the standard sorting algorithm in Sun’s Java 7. In 2014 at ALENEX, Kushagra et al. introduced an even faster algorithm that uses three pivots. This article studies what possible advantages multi-pivot quicksort might offer in general. The contributions are as follows: Natural comparison-optimal algorithms for multi-pivot quicksort are devised and analyzed. The analysis shows that the benefits of using multiple pivots with respect to the average comparison count are marginal and these strategies are inferior to simpler strategies such as the well-known median-of-
k
approach. A substantial part of the partitioning cost is caused by rearranging elements. A rigorous analysis of an algorithm for rearranging elements in the partitioning step is carried out, observing mainly how often array cells are accessed during partitioning. The algorithm behaves best if three to five pivots are used. Experiments show that this translates into good cache behavior and is closest to predicting observed running times of multi-pivot quicksort algorithms. Finally, it is studied how choosing pivots from a sample affects sorting cost. The study is theoretical in the sense that although the findings motivate design recommendations for multipivot quicksort algorithms that lead to running-time improvements over known algorithms in an experimental setting, these improvements are small.
Publisher
Association for Computing Machinery (ACM)
Subject
Mathematics (miscellaneous)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献