Optimal Partitioning for Dual-Pivot Quicksort

Author:

Aumüller Martin1,Dietzfelbinger Martin1

Affiliation:

1. Technische Universität Ilmenau, Germany

Abstract

Dual-pivot quicksort refers to variants of classical quicksort where in the partitioning step two pivots are used to split the input into three segments. This can be done in different ways, giving rise to different algorithms. Recently, a dual-pivot algorithm due to Yaroslavskiy received much attention, because it replaced the well-engineered quicksort algorithm in Oracle’s Java 7 runtime library. Nebel and Wild (ESA 2012) analyzed this algorithm and showed that on average it uses 1.9 n ln n + O ( n ) comparisons to sort an input of size n , beating standard quicksort, which uses 2 n ln n + O ( n ) comparisons. We introduce a model that captures all dual-pivot algorithms, give a unified analysis, and identify new dual-pivot algorithms that minimize the average number of key comparisons among all possible algorithms up to a linear term. This minimum is 1.8 n ln n + O ( n ). For the case that the pivots are chosen from a small sample, we include a comparison of dual-pivot quicksort and classical quicksort. Specifically, we show that dual-pivot quicksort benefits from a skewed choice of pivots. We experimentally evaluate our algorithms and compare them to Yaroslavskiy’s algorithm and the recently described 3-pivot quicksort algorithm of Kushagra et al. (ALENEX 2014).

Publisher

Association for Computing Machinery (ACM)

Subject

Mathematics (miscellaneous)

Reference18 articles.

1. Thomas H. Cormen Charles E. Leiserson Ronald L. Rivest and Clifford Stein. 2009. Introduction to Algorithms (3rd ed.). MIT Press. Thomas H. Cormen Charles E. Leiserson Ronald L. Rivest and Clifford Stein. 2009. Introduction to Algorithms (3rd ed.). MIT Press.

2. Devdatt P. Dubhashi and Alessandro Panconesi. 2009. Concentration of Measure for the Analysis of Randomized Algorithms. Cambridge University Press. Devdatt P. Dubhashi and Alessandro Panconesi. 2009. Concentration of Measure for the Analysis of Randomized Algorithms. Cambridge University Press.

3. Pascal Hennequin. 1991. Analyse en moyenne d’algorithmes: tri rapide et arbres de recherche. Ph.D. Dissertation. Ecole Politechnique Palaiseau. http://www-lor.int-evry.fr/∼pascal/. Pascal Hennequin. 1991. Analyse en moyenne d’algorithmes: tri rapide et arbres de recherche. Ph.D. Dissertation. Ecole Politechnique Palaiseau. http://www-lor.int-evry.fr/∼pascal/.

4. Quicksort

5. Donald E. Knuth. 1973. The Art of Computer Programming Volume III: Sorting and Searching. Addison-Wesley. Donald E. Knuth. 1973. The Art of Computer Programming Volume III: Sorting and Searching. Addison-Wesley.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A new approach to Mergesort algorithm: Divide smart and conquer;Future Generation Computer Systems;2024-08

2. Scalable Text Index Construction;Lecture Notes in Computer Science;2022

3. Optimizing Complexity of Quick Sort;Communications in Computer and Information Science;2020

4. Complexity analysis and performance of double hashing sort algorithm;Journal of the Egyptian Mathematical Society;2019-04-04

5. Dual-Pivot Quicksort: Optimality, Analysis and Zeros of Associated Lattice Paths;Combinatorics, Probability and Computing;2018-08-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3