Affiliation:
1. Rice University
2. University of California, Los Angeles
Abstract
Physically unclonable functions (PUFs) provide a basis for many security and digital rights management protocols. PUF-based security approaches have numerous comparative strengths with respect to traditional cryptography-based techniques, including resilience against physical and side channel attacks and suitability for lightweight protocols. However, classical delay-based PUF structures have a number of drawbacks including susceptibility to guessing, reverse engineering, and emulation attacks, as well as sensitivity to operational and environmental variations.
To address these limitations, we have developed a new set of techniques for FPGA-based PUF design and implementation. We demonstrate how reconfigurability can be exploited to eliminate the stated PUF limitations. We also show how FPGA-based PUFs can be used for privacy protection. Furthermore, reconfigurability enables the introduction of new techniques for PUF testing. The effectiveness of all the proposed techniques is validated using extensive implementations, simulations, and statistical analysis.
Publisher
Association for Computing Machinery (ACM)
Cited by
120 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献