Using random sampling to build approximate tries for efficient string sorting

Author:

Sinha Ranjan1,Zobel Justin1

Affiliation:

1. RMIT University, Melbourne, Australia

Abstract

Algorithms for sorting large datasets can be made more efficient with careful use of memory hierarchies and reduction in the number of costly memory accesses. In earlier work, we introduced burstsort, a new string-sorting algorithm that on large sets of strings is almost twice as fast as previous algorithms, primarily because it is more cache efficient. Burstsort dynamically builds a small trie that is used to rapidly allocate each string to a bucket. In this paper, we introduce new variants of our algorithm: SR-burstsort, DR-burstsort, and DRL-burstsort. These algorithms use a random sample of the strings to construct an approximation to the trie prior to sorting. Our experimental results with sets of over 30 million strings show that the new variants reduce, by up to 37%, cache misses further than did the original burstsort, while simultaneously reducing instruction counts by up to 24%. In pathological cases, even further savings can be obtained.

Publisher

Association for Computing Machinery (ACM)

Subject

Theoretical Computer Science

Reference19 articles.

1. Aho A. Hopcroft J. E. and Ullman J. D. 1974. The Design and Analysis of Computer Algorithms. Addison-Wesley Reading MA. Aho A. Hopcroft J. E. and Ullman J. D. 1974. The Design and Analysis of Computer Algorithms. Addison-Wesley Reading MA.

2. Implementing radixsort

3. On sorting strings in external memory (extended abstract)

4. Sorting by distributive partitioning

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Engineering burstsort;ACM Journal of Experimental Algorithmics;2010-03

2. Comparing integer data structures for 32- and 64-bit keys;ACM Journal of Experimental Algorithmics;2010-03

3. Comparing Integer Data Structures for 32 and 64 Bit Keys;Experimental Algorithms

4. Engineering Burstsort: Towards Fast In-Place String Sorting;Experimental Algorithms

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3