Comparing integer data structures for 32- and 64-bit keys

Author:

Nash Nicholas1,Gregg David2

Affiliation:

1. Trinity College Dublin, Ireland

2. Lero, Trinity College Dublin, Ireland

Abstract

In this article, we experimentally compare a number of data structures operating over keys that are 32- and 64-bit integers. We examine traditional comparison-based search trees as well as data structures that take advantage of the fact that the keys are integers such as van Emde Boas trees and various trie-based data structures. We propose a variant of a burst trie that performs better in time than all the alternative data structures. In addition, even for small sets of keys, this burst trie variant occupies less space than comparison-based data structures such as red-black trees and B -trees. Burst tries have previously been shown to provide a very efficient base for implementing cache efficient string sorting algorithms. We find that with suitable engineering, they also perform excellently as a dynamic ordered data structure operating over integer keys. We provide experimental results when the data structures operate over uniform random data. We also present experimental results for other types of data, including datasets arising from Valgrind , a widely used suite of tools for the dynamic binary instrumentation of programs.

Publisher

Association for Computing Machinery (ACM)

Subject

Theoretical Computer Science

Reference38 articles.

1. Improved behaviour of tries by adaptive branching

2. Organization and maintenance of large ordered indices. Acta;Bayer R.;Inf.,1972

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3