A Semantically Driven Hybrid Network for Unsupervised Entity Alignment

Author:

Li Jia1ORCID,Song Dandan1ORCID,Wu Zhijing1ORCID

Affiliation:

1. School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China

Abstract

The major challenge in the task of entity alignment (EA) lies in the heterogeneity of the knowledge graph. The traditional solution to EA is to first map entities to the same space via knowledge embedding and then calculate the similarity between entities from different knowledge graphs. However, these methods mainly rely on manually labeled seeds of EA, which limits their applicability. Some researchers have begun using pseudo-labels rather than seeds for unsupervised EA. However, directly using pseudo-labels causes new problems, such as noise in the pseudo-labels. In this article, we propose a model called the Semantically Driven Hybrid Network (SDHN) to reduce the impact of noise in the pseudo-labels on the performance of EA models. The SDHN consists of two modules: a Teacher–Student Network (TSN) and a Rotation and Penalty (RAP) module. The TSN module reduces the impact of noise in two ways: (1) The TSN’s teacher network guides its student network to construct pseudo-labels based on semantic information instead of directly creating pseudo-labels. (2) It adaptively fuses semantic information into student networks to improve the final representation of entity embedding. Finally, the TSN enhances the performance of models of entity alignment via the RAP module. The results of experiments on multiple benchmark datasets showed that the SDHN outperforms state-of-the-art models.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Beijing Academy of Artificial Intelligence

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Reference54 articles.

1. Principal component analysis

2. $rm K$-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation

3. Alexis Conneau Guillaume Lample Marc’Aurelio Ranzato Ludovic Denoyer and Hervé Jégou. 2017. Word translation without parallel data. arXiv preprint arXiv:1710.04087 (2017).

4. Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko. 2013. Translating embeddings for modeling multi-relational data. In Neural Information Processing Systems (NIPS’13). 1–9.

5. Yixin Cao Zhiyuan Liu Chengjiang Li Juanzi Li and Tat-Seng Chua. 2019. Multi-channel graph neural network for entity alignment. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics . 1452–1461.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3