Funder
Henan Provincial Natural Science Foundation
Publisher
Springer Science and Business Media LLC
Reference53 articles.
1. Bojanowski, P., Grave, E., Joulin, A., et al. (2017). Enriching word vectors with subword information. Transactions of the Association for Computational Linguistics, 5, 135–146. https://doi.org/10.1162/tacl_a_00051
2. Cai, L., Mao, X., Ma, M., et al. (2022). A simple temporal information matching mechanism for entity alignment between temporal knowledge graphs. In: Proceedings of the 29th International Conference on Computational Linguistics, pp 2075–2086
3. Cao, Y., Liu, Z., Li, C., et al. (2019). Multi-channel graph neural network for entity alignment. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (pp. 1452–1461). https://doi.org/10.18653/v1/p19-1140
4. Chen, B., Zhang, J., Tang, X., et al. (2020). Jarka: modeling attribute interactions for cross-lingual knowledge alignment. In: Advances in Knowledge Discovery and Data Mining: 24th Pacific-Asia Conference, PAKDD 2020, Singapore, May 11–14, 2020, Proceedings, Part I 24, Springer (pp. 845–856). https://doi.org/10.1007/978-3-030-47426-3_65
5. Chen, M., Tian, Y., Yang, M., et al. (2017). Multilingual knowledge graph embeddings for cross-lingual knowledge alignment. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence (pp. 1511–1517). https://doi.org/10.24963/ijcai.2017/209