ReLU Hull Approximation

Author:

Ma Zhongkui1ORCID,Li Jiaying2ORCID,Bai Guangdong1ORCID

Affiliation:

1. University of Queensland, Brisbane, Australia

2. Microsoft, Beijing, China

Abstract

Convex hulls are commonly used to tackle the non-linearity of activation functions in the verification of neural networks. Computing the exact convex hull is a costly task though. In this work, we propose a fast and precise approach to over-approximating the convex hull of the ReLU function (referred to as the ReLU hull), one of the most used activation functions. Our key insight is to formulate a convex polytope that ”wraps” the ReLU hull, by reusing the linear pieces of the ReLU function as the lower faces and constructing upper faces that are adjacent to the lower faces. The upper faces can be efficiently constructed based on the edges and vertices of the lower faces, given that an n -dimensional (or simply n d hereafter) hyperplane can be determined by an ( n −1)d hyperplane and a point outside of it. We implement our approach as WraLU, and evaluate its performance in terms of precision, efficiency, constraint complexity, and scalability. WraLU outperforms existing advanced methods by generating fewer constraints to achieve tighter approximation in less time. It exhibits versatility by effectively addressing arbitrary input polytopes and higher-dimensional cases, which are beyond the capabilities of existing methods. We integrate WraLU into PRIMA, a state-of-the-art neural network verifier, and apply it to verify large-scale ReLU-based neural networks. Our experimental results demonstrate that WraLU achieves a high efficiency without compromising precision. It reduces the number of constraints that need to be solved by the linear programming solver by up to half, while delivering comparable or even superior results compared to the state-of-the-art verifiers.

Funder

Australian Research Council

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Reference56 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3