1. Amos, B., Xu, L., Kolter, J.Z.: Input convex neural networks. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 70, pp. 146–155. PMLR, International Convention Centre, Sydney, Australia, 06–11 August 2017
2. Anderson, R., Huchette, J., Tjandraatmadja, C., Vielma, J.P.: Strong convex relaxations and mixed-integer programming formulations for trained neural networks (2018).
https://arxiv.org/abs/1811.01988
3. Arulkumaran, K., Deisenroth, M.P., Brundage, M., Bharath, A.A.: Deep reinforcement learning: a brief survey. IEEE Signal Process. Mag. 34(6), 26–38 (2017)
4. Atamtürk, A., Gómez, A.: Strong formulations for quadratic optimization with M-matrices and indicator variables. Math. Program. 170, 141–176 (2018)
5. Balas, E.: Disjunctive programming and a hierarchy of relaxations for discrete optimization problems. SIAM J. Algorithmic Discret. Methods 6(3), 466–486 (1985)