Is transactional programming actually easier?

Author:

Rossbach Christopher J.1,Hofmann Owen S.1,Witchel Emmett1

Affiliation:

1. University of Texas at Austin, Austin, TX, USA

Abstract

Chip multi-processors (CMPs) have become ubiquitous, while tools that ease concurrent programming have not. The promise of increased performance for all applications through ever more parallel hardware requires good tools for concurrent programming, especially for average programmers. Transactional memory (TM) has enjoyed recent interest as a tool that can help programmers program concurrently. The transactional memory (TM) research community is heavily invested in the claim that programming with transactional memory is easier than alternatives (like locks), but evidence for or against the veracity of this claim is scant. In this paper, we describe a user-study in which 237 undergraduate students in an operating systems course implement the same programs using coarse and fine-grain locks, monitors, and transactions. We surveyed the students after the assignment, and examined their code to determine the types and frequency of programming errors for each synchronization technique. Inexperienced programmers found baroque syntax a barrier to entry for transactional programming. On average, subjective evaluation showed that students found transactions harder to use than coarse-grain locks, but slightly easier to use than fine-grained locks. Detailed examination of synchronization errors in the students' code tells a rather different story. Overwhelmingly, the number and types of programming errors the students made was much lower for transactions than for locks. On a similar programming problem, over 70% of students made errors with fine-grained locking, while less than 10% made errors with transactions.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Reference33 articles.

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A parallel programming assessment for stream processing applications on multi-core systems;Computer Standards & Interfaces;2023-03

2. GPU Programming Productivity in Different Abstraction Paradigms;ACM Transactions on Computing Education;2020-12-31

3. Analysis of a Randomized Controlled Trial of Student Performance in Parallel Programming using a New Measurement Technique;ACM Transactions on Computing Education;2020-09-30

4. Giving Future(s) to Transactional Memory;Proceedings of the 32nd ACM Symposium on Parallelism in Algorithms and Architectures;2020-07-06

5. Convoider: A Concurrency Bug Avoider Based on Transparent Software Transactional Memory;International Journal of Parallel Programming;2019-09-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3