Jitter-based Adaptive True Random Number Generation Circuits for FPGAs in the Cloud

Author:

Li Xiang1,Stanwicks Peter1,Provelengios George1,Tessier Russell1,Holcomb Daniel1

Affiliation:

1. University of Massachusetts Amherst, Amherst, MA

Abstract

In this article, we present and evaluate a true random number generator (TRNG) design that is compatible with the restrictions imposed by cloud-based Field Programmable Gate Array (FPGA) providers such as Amazon Web Services (AWS) EC2 F1. Because cloud FPGA providers disallow the ring oscillator circuits that conventionally generate TRNG entropy, our design is oscillator-free and uses clock jitter as its entropy source. The clock jitter is harvested with a time-to-digital converter (TDC) and a controllable delay line that is continuously tuned to compensate for process, voltage, and temperature variations. After describing the design, we present and validate a stochastic model that conservatively quantifies its worst-case entropy. We deploy and model the design in the cloud on 60 EC2 F1 FPGA instances to ensure sufficient randomness is captured. TRNG entropy is further validated using NIST test suites, and experiments are performed to understand how the TRNG responds to on-die power attacks that disturb the FPGA supply voltage in the vicinity of the TRNG. After introducing and validating our basic TRNG design, we introduce and validate a new variant that uses four instances of a linkable sampling module to increase the entropy per sample and improve throughput. The new variant improves throughput by 250% at a modest 17% increase in CLB count.

Funder

NSF

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. High-efficiency TRNG Design Based on Multi-bit Dual-ring Oscillator;ACM Transactions on Reconfigurable Technology and Systems;2023-12-05

2. Random Number Generators;Deterministic and Stochastic Approaches in Computer Modeling and Simulation;2023-10-06

3. Increasing the Robustness of TERO-TRNGs Against Process Variation;ACM Transactions on Reconfigurable Technology and Systems;2023-07-27

4. On-Line Evaluation and Monitoring of Security Features of an RO-Based PUF/TRNG for IoT Devices;Sensors;2023-04-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3