On-Line Evaluation and Monitoring of Security Features of an RO-Based PUF/TRNG for IoT Devices

Author:

Rojas-Muñoz Luis F.1ORCID,Sánchez-Solano Santiago1ORCID,Martínez-Rodríguez Macarena C.1ORCID,Brox Piedad1ORCID

Affiliation:

1. Instituto de Microelectrónica de Sevilla, IMSE-CNM, CSIC/Universidad de Sevilla, 41092 Sevilla, Spain

Abstract

The proliferation of devices for the Internet of Things (IoT) and their implication in many activities of our lives have led to a considerable increase in concern about the security of these devices, posing a double challenge for designers and developers of products. On the one hand, the design of new security primitives, suitable for resource-limited devices, can facilitate the inclusion of mechanisms and protocols to ensure the integrity and privacy of the data exchanged over the Internet. On the other hand, the development of techniques and tools to evaluate the quality of the proposed solutions as a step prior to their deployment, as well as to monitor their behavior once in operation against possible changes in operating conditions arising naturally or as a consequence of a stress situation forced by an attacker. To address these challenges, this paper first describes the design of a security primitive that plays an important role as a component of a hardware-based root of trust, as it can act as a source of entropy for True Random Number Generation (TRNG) or as a Physical Unclonable Function (PUF) to facilitate the generation of identifiers linked to the device on which it is implemented. The work also illustrates different software components that allow carrying out a self-assessment strategy to characterize and validate the performance of this primitive in its dual functionality, as well as to monitor possible changes in security levels that may occur during operation as a result of device aging and variations in power supply or operating temperature. The designed PUF/TRNG is provided as a configurable IP module, which takes advantage of the internal architecture of the Xilinx Series-7 and Zynq-7000 programmable devices and incorporates an AXI4-based standard interface to facilitate its interaction with soft- and hard-core processing systems. Several test systems that contain different instances of the IP have been implemented and subjected to an exhaustive set of on-line tests to obtain the metrics that determine its quality in terms of uniqueness, reliability, and entropy characteristics. The results obtained prove that the proposed module is a suitable candidate for various security applications. As an example, an implementation that uses less than 5% of the resources of a low-cost programmable device is capable of obfuscating and recovering 512-bit cryptographic keys with virtually zero error rate.

Funder

SPIRS Project

ARES Project

EU NextGeneration EU/PRTR

Andalusia Government

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3