Projected Gaussian Markov Improvement Algorithm for High-Dimensional Discrete Optimization via Simulation

Author:

Li Xinru1ORCID,Song Eunhye2ORCID

Affiliation:

1. General Motors Corp, Warren, USA

2. Georgia Institute of Technology, Atlanta, USA

Abstract

This article considers a discrete optimization via simulation (DOvS) problem defined on a graph embedded in the high-dimensional integer grid. Several DOvS algorithms that model the responses at the solutions as a realization of a Gaussian Markov random field (GMRF) have been proposed exploiting its inferential power and computational benefits. However, the computational cost of inference increases exponentially in dimension. We propose the projected Gaussian Markov improvement algorithm (pGMIA), which projects the solution space onto a lower-dimensional space creating the region-layer graph to reduce the cost of inference. Each node on the region-layer graph can be mapped to a set of solutions projected to the node; these solutions form a lower-dimensional solution-layer graph. We define the response at each region-layer node to be the average of the responses within the corresponding solution-layer graph. From this relation, we derive the region-layer GMRF to model the region-layer responses. The pGMIA alternates between the two layers to make a sampling decision at each iteration. It first selects a region-layer node based on the lower-resolution inference provided by the region-layer GMRF, then makes a sampling decision among the solutions within the solution-layer graph of the node based on the higher-resolution inference from the solution-layer GMRF. To solve even higher-dimensional problems (e.g., 100 dimensions), we also propose the pGMIA+: a multi-layer extension of the pGMIA. We show that both pGMIA and pGMIA+ converge to the optimum almost surely asymptotically and empirically demonstrate their competitiveness against state-of-the-art high-dimensional Bayesian optimization algorithms.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Reference37 articles.

1. Ricardo Baptista and Matthias Poloczek. 2018. Bayesian optimization of combinatorial structures. In Proceedings of the 35th International Conference on Machine Learning.

2. On the choice of the low-dimensional domain for global optimization via random embeddings;Binois Mickaël;Journal of Global Optimization,2020

3. A survey on high-dimensional Gaussian process modeling with application to Bayesian optimization;Binois Mickaël;ACM Transactions on Evolutionary Learning and Optimization,2022

4. Using active learning for speeding up calibration in simulation models;Cevik Mucahit;Medical Decision Making,2016

5. William Gemmell Cochran. 1977. Sampling Techniques. New York: Wiley.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3