1. Binois, M.: Uncertainty quantification on Pareto fronts and high-dimensional strategies in Bayesian optimization, with applications in multi-objective automotive design. Ph.D. thesis, Ecole Nationale Supérieure des Mines de Saint-Etienne (2015)
2. Binois, M., Ginsbourger, D., Roustant, O.: A warped kernel improving robustness in Bayesian optimization via random embeddings. In: Dhaenens, C., Jourdan, L., Marmion, M.E. (eds.) Learning and Intelligent Optimization. Lecture Notes in Computer Science, vol. 8994, pp. 281–286. Springer, New York (2015).
https://doi.org/10.1007/978-3-319-19084-6_28
3. Carpentier, A., Munos, R.: Bandit theory meets compressed sensing for high dimensional stochastic linear bandit. In: International Conference on Artificial Intelligence and Statistics (2012)
4. Černỳ, M.: Goffin’s algorithm for zonotopes. Kybernetika 48(5), 890–906 (2012)
5. Chen, B., Castro, R., Krause, A.: Joint optimization and variable selection of high-dimensional Gaussian processes. In: Proceedings of International Conference on Machine Learning (ICML) (2012)