Improving Performance in Sub-Block Caches with Optimized Replacement Policies

Author:

Olorode Oluleye1,Nourani Mehrdad1

Affiliation:

1. The University of Texas at Dallas, Richardson, TX

Abstract

Recent advances in computer processor design have led to the introduction of sub-blocking to cache architectures. Sub-block caches reduce the tag area and power overhead in caches without reducing the effective cache size by using fewer tags to index the full data RAM array. In spite of achieving reduced area and power overhead, sub-block caches suffer performance degradation due to cache trashing. This occurs when a wider cache line (super-block), made up of multiple valid cache lines (sub-blocks), is replaced or evicted when only a sub-block is to be allocated into the wider super-block. To address this problem, we propose cache replacement policies as they relate specifically to sub-block caches. We propose new replacement policies that are tuned for sub-block caches by adding more intelligence based on the valid state of individual sub-blocks of a super-block. We also investigate the effect of using a few level-0 registers to bypass a few level-1 cache pipe stages on sub-block cache performance. To evaluate the performance improvement offered by our proposed replacement policies and the use of level-0 registers, we developed a sub-block cache simulator based on the Simplescalar toolset for single-core evaluations and the Sniper Simulator for multicore evaluations. We show that, with minimal architectural updates to existing conventional cache replacement policies, we are able to improve level-1 cache hit rates by up to 4.17% using our proposed policies alone on SPEC2006 benchmarks and up to 14% in shared level-2 caches using multicore benchmark suites: PARSEC and SPLASH2.

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3