DONGLE 2.0: Direct FPGA-Orchestrated NVMe Storage for HLS

Author:

Wong Linus Y.1,Zhang Jialiang1,Li Jing (Jane)2

Affiliation:

1. University of Pennsylvania, Philadelphia, USA

2. University of Pennsylvania, Philadelphia Philadelphia, USA

Abstract

Rapid growth in data size poses significant computational and memory challenges to data processing. FPGA accelerators and near-storage processing have emerged as compelling solutions for tackling the growing computational and memory requirements. Many FPGA-based accelerators have shown to be effective in processing large data sets by leveraging the storage capability of either host-attached or FPGA-attached storage devices. However, the current HLS development environment does not allow direct access to host- or FPGA-attached NVMe storage from the HLS code. As such, users must frequently hand off between HLS and host code to access data in storage, and such a process requires tedious programming to ensure functional correctness. Moreover, since the HLS code uses radically different methods to access storage compared to DRAM, the HLS codebase targeting DRAM-based platforms cannot be easily ported to NVMe-based platforms, resulting in limited code portability and reusability. Furthermore, frequent suspension of HLS kernel and synchronization between CPU and FPGA introduce significant latency overhead and require sophisticated scheduling mechanisms to hide latency. To address these challenges, we propose a new HLS storage interface named DONGLE 2.0 that enables direct FPGA-orchestrated NVMe storage access. By providing a unified interface for storage and memory access, DONGLE 2.0 allows a single-source HLS program to target multiple memory/storage devices, thus making the codebase cleaner, portable, and more efficient. DONGLE 2.0 is an extension to DONGLE 1.0 [1] but adds support for host-attached storage. While its primary focus is still on FPGA NVMe access in near-storage configurations, the added host storage support ensures its compatibility with platforms that lack native support for FPGA-attached NVMe storage. We implemented a prototype of DONGLE 2.0 using an AMD/Xilinx Alveo U200 FPGA and Solidigm DC-P4610 SSD. Our evaluation on various workloads showed a geometric mean speed-up of 2.3 × and a reduction in lines of code by 2.4 × compared to the state-of-the-art commercial platform when using FPGA-attached NVMe storage. Moreover, DONGLE 2.0 demonstrated a geometric mean speed-up of 1.5 × and a reduction in lines of code by 2.4 × compared to the state-of-the-art commercial platform when using host-attached NVMe storage.

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3