Computational design of high-level interlocking puzzles

Author:

Chen Rulin1,Wang Ziqi2,Song Peng1,Bickel Bernd3

Affiliation:

1. Singapore University of Technology and Design, Singapore

2. EPFL, Switzerland and ETH Zürich, Switzerland

3. IST, Austria

Abstract

Interlocking puzzles are intriguing geometric games where the puzzle pieces are held together based on their geometric arrangement, preventing the puzzle from falling apart. High-level-of-difficulty , or simply high-level , interlocking puzzles are a subclass of interlocking puzzles that require multiple moves to take out the first subassembly from the puzzle. Solving a high-level interlocking puzzle is a challenging task since one has to explore many different configurations of the puzzle pieces until reaching a configuration where the first subassembly can be taken out. Designing a high-level interlocking puzzle with a user-specified level of difficulty is even harder since the puzzle pieces have to be interlocking in all the configurations before the first subassembly is taken out. In this paper, we present a computational approach to design high-level interlocking puzzles. The core idea is to represent all possible configurations of an interlocking puzzle as well as transitions among these configurations using a rooted, undirected graph called a disassembly graph and leverage this graph to find a disassembly plan that requires a minimal number of moves to take out the first subassembly from the puzzle. At the design stage, our algorithm iteratively constructs the geometry of each puzzle piece to expand the disassembly graph incrementally, aiming to achieve a user-specified level of difficulty. We show that our approach allows efficient generation of high-level interlocking puzzles of various shape complexities, including new solutions not attainable by state-of-the-art approaches.

Funder

SUTD Start-up Research Grant

European Research Council

Swiss National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Reference48 articles.

1. Designing effective step-by-step assembly instructions

2. State of the Art on Stylized Fabrication

3. Stewart T. Coffin. 2006. Geometric Puzzle Design. A. K. Peters. Stewart T. Coffin. 2006. Geometric Puzzle Design. A. K. Peters.

4. Bill Cutler. 1988. Holey 6-Piece Burr! A Collection and Computer Analysis of Unusual Designs. http://billcutlerpuzzles.com/docs/H6PB/index.html. Bill Cutler. 1988. Holey 6-Piece Burr! A Collection and Computer Analysis of Unusual Designs. http://billcutlerpuzzles.com/docs/H6PB/index.html.

5. Assembly-aware Design of Printable Electromechanical Devices

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3