Affiliation:
1. Shandong University, China
2. Peking University, China
Abstract
Additive and subtractive hybrid manufacturing (ASHM) involves the alternating use of additive and subtractive manufacturing techniques, which provides unique advantages for fabricating complex geometries with otherwise inaccessible surfaces. However, a significant challenge lies in ensuring tool accessibility during both fabrication procedures, as the object shape may change dramatically, and different parts of the shape are interdependent. In this study, we propose a computational framework to optimize the planning of additive and subtractive sequences while ensuring tool accessibility. Our goal is to minimize the switching between additive and subtractive processes to achieve efficient fabrication while maintaining product quality. We approach the problem by formulating it as a Volume-And-Surface-CO-decomposition (VASCO) problem. First, we slice volumes into slabs and build a dynamic-directed graph to encode manufacturing constraints, with each node representing a slab and direction reflecting operation order. We introduce a novel geometry property called hybrid-fabricability for a pair of additive and subtractive procedures. Then, we propose a beam-guided top-down block decomposition algorithm to solve the VASCO problem. We apply our solution to a 5-axis hybrid manufacturing platform and evaluate various 3D shapes. Finally, we assess the performance of our approach through both physical and simulated manufacturing evaluations.
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Graphics and Computer-Aided Design
Reference57 articles.
1. State of the Art in Computational Mould Design
2. Volume decomposition for two-piece rigid casting
3. Thomas Alderighi , Luigi Malomo , Daniela Giorgi , Bernd Bickel , Paolo Cignoni , and Nico Pietroni . 2019. Volume-aware design of composite molds. ACM Transactions on Graphics ( 2019 ). Thomas Alderighi, Luigi Malomo, Daniela Giorgi, Bernd Bickel, Paolo Cignoni, and Nico Pietroni. 2019. Volume-aware design of composite molds. ACM Transactions on Graphics (2019).
4. Metamolds
5. Surface2Volume
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献