Character articulation through profile curves

Author:

De Goes Fernando1,Sheffler William1,Fleischer Kurt1

Affiliation:

1. Pixar Animation Studios

Abstract

Computer animation relies heavily on rigging setups that articulate character surfaces through a broad range of poses. Although many deformation strategies have been proposed over the years, constructing character rigs is still a cumbersome process that involves repetitive authoring of point weights and corrective sculpts with limited and indirect shaping controls. This paper presents a new approach for character articulation that produces detail-preserving deformations fully controlled by 3D curves that profile the deforming surface. Our method starts with a spline-based rigging system in which artists can draw and articulate sparse curvenets that describe surface profiles. By analyzing the layout of the rigged curvenets, we quantify the deformation along each curve side independent of the mesh connectivity, thus separating the articulation controllers from the underlying surface representation. To propagate the curvenet articulation over the character surface, we formulate a deformation optimization that reconstructs surface details while conforming to the rigged curvenets. In this process, we introduce a cut-cell algorithm that binds the curvenet to the surface mesh by cutting mesh elements into smaller polygons possibly with cracks, and then derive a cut-aware numerical discretization that provides harmonic interpolations with curve discontinuities. We demonstrate the expressiveness and flexibility of our method using a series of animation clips.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Reference57 articles.

1. Extended virtual element method for the Laplace problem with singularities and discontinuities

2. M. Berger . 2017 . Chapter 1 - Cut Cells: Meshes and Solvers. In Handbook of Numerical Methods for Hyperbolic Problems, R. Abgrall and C.-W. Shu (Eds.) . Handbook of Numerical Analysis , Vol. 18 . Elsevier, 1--22. M. Berger. 2017. Chapter 1 - Cut Cells: Meshes and Solvers. In Handbook of Numerical Methods for Hyperbolic Problems, R. Abgrall and C.-W. Shu (Eds.). Handbook of Numerical Analysis, Vol. 18. Elsevier, 1--22.

3. M. Botsch , M. Pauly , M. Gross , and L. Kobbelt . 2006 . PriMo: Coupled Prisms for Intuitive Surface Modeling. In Symposium on Geometry Processing. 11--20 . M. Botsch, M. Pauly, M. Gross, and L. Kobbelt. 2006. PriMo: Coupled Prisms for Intuitive Surface Modeling. In Symposium on Geometry Processing. 11--20.

4. On Linear Variational Surface Deformation Methods

5. A vectorial solver for free-form vector gradients

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3