The power particle-in-cell method

Author:

Qu Ziyin1,Li Minchen2,De Goes Fernando3,Jiang Chenfanfu2

Affiliation:

1. University of Pennsylvania and University of California Los Angeles

2. University of California Los Angeles

3. Pixar Animation Studios

Abstract

This paper introduces a new weighting scheme for particle-grid transfers that generates hybrid Lagrangian/Eulerian fluid simulations with uniform particle distributions and precise volume control. At its core, our approach reformulates the construction of Power Particles [de Goes et al. 2015] by computing volume-constrained density kernels. We employ these optimized kernels as particle domains within the Generalized Interpolation Material Point method (GIMP) in order to incorporate Power Particles into the Particle-In-Cell framework, hence the name the Power Particle-In-Cell method. We address the construction of volume-constrained density kernels as a regularized optimal transportation problem and describe an iterative solver based on localized Gaussian convolutions that leads to a significant performance speedup compared to [de Goes et al. 2015]. We also present novel extensions for handling free surfaces and solid obstacles that bypass the need for cell clipping and ghost particles. We demonstrate the advantages of our transfer weights by improving hybrid schemes for fluid simulation such as the Fluid Implicit Particle (FLIP) method and the Affine Particle-In-Cell (APIC) method with volume preservation and robustness to varying particle-per-cell ratio, while retaining low numerical dissipation, conserving linear and angular momenta, and avoiding particle reseeding or post-process relaxations.

Funder

NSF

DOE U.S. Department of Energy

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3