Affiliation:
1. School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract
The atmospheric flow field and weather processes exhibit complex and variable characteristics at small scales, involving interactions between terrain features and atmospheric physics. To investigate the mechanisms of these process further, this study employs a Lagrangian particle motion model combined with a Euler background field approach to construct a small-scale atmospheric flow field model. The model streamlines the modeling process by combining the benefits of the Lagrangian dynamics model and the Eulerian integration scheme. To verify the effectiveness of the Euler–Lagrange hybrid model, experiments using the Fluent wind field model were conducted for comparison. The results show that both models have their advantages in handling terrain-induced wind fields. The Fluent model excels in simulating the general characteristics of wind fields under specific terrain, while the Euler–Lagrange hybrid model is better at capturing the upstream and downstream disturbances of the terrain on the atmospheric flow field. These findings provide powerful tools for in-depth diagnostic analysis of atmospheric flow simulation and convective precipitation processes. Notably, the Euler–Lagrange hybrid model demonstrates excellent computational efficiency, with an average computation time of approximately 2 s per time step in a Python environment, enabling rapid simulation of 40 time steps within approximately 90 s.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China during the 14th Five-Year Plan Period
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献