Unbiased inverse volume rendering with differential trackers

Author:

Nimier-David Merlin1ORCID,Müller Thomas2ORCID,Keller Alexander3ORCID,Jakob Wenzel1ORCID

Affiliation:

1. École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

2. NVIDIA, Switzerland

3. NVIDIA, Germany

Abstract

Volumetric representations are popular in inverse rendering because they have a simple parameterization, are smoothly varying, and transparently handle topology changes. However, incorporating the full volumetric transport of light is costly and challenging, often leading practitioners to implement simplified models, such as purely emissive and absorbing volumes with "baked" lighting. One such challenge is the efficient estimation of the gradients of the volume's appearance with respect to its scattering and absorption parameters. We show that the straightforward approach---differentiating a volumetric free-flight sampler---can lead to biased and high-variance gradients, hindering optimization. Instead, we propose using a new sampling strategy: differential ratio tracking , which is unbiased, yields low-variance gradients, and runs in linear time. Differential ratio tracking combines ratio tracking and reservoir sampling to estimate gradients by sampling distances proportional to the unweighted transmittance rather than the usual extinction-weighted transmittance. In addition, we observe local minima when optimizing scattering parameters to reproduce dense volumes or surfaces. We show that these local minima can be overcome by bootstrapping the optimization from nonphysical emissive volumes that are easily optimized.

Funder

Swiss National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Reference69 articles.

1. Inverse Path Tracing for Joint Material and Lighting Estimation

2. Unbiased warped-area sampling for differentiable rendering

3. Jonathan T. Barron , Ben Mildenhall , Matthew Tancik , Peter Hedman , Ricardo Martin-Brualla , and Pratul P . Srinivasan . 2021 a. Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields . arXiv (2021). https://jonbarron.info/mipnerf/ Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-Brualla, and Pratul P. Srinivasan. 2021a. Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields. arXiv (2021). https://jonbarron.info/mipnerf/

4. Jonathan T. Barron , Ben Mildenhall , Dor Verbin , Pratul P. Srinivasan , and Peter Hedman . 2021b. Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields. arXiv:2111.12077 (Nov . 2021 ). Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter Hedman. 2021b. Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields. arXiv:2111.12077 (Nov. 2021).

5. Sai Bi Zexiang Xu Pratul Srinivasan Ben Mildenhall Kalyan Sunkavalli Miloš Hašan Yannick Hold-Geoffroy David Kriegman and Ravi Ramamoorthi. 2020. Neural Reflectance Fields for Appearance Acquisition. Sai Bi Zexiang Xu Pratul Srinivasan Ben Mildenhall Kalyan Sunkavalli Miloš Hašan Yannick Hold-Geoffroy David Kriegman and Ravi Ramamoorthi. 2020. Neural Reflectance Fields for Appearance Acquisition.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Three approaches on estimating geometric sensitivities in radiative transfer with Monte Carlo;Journal of Quantitative Spectroscopy and Radiative Transfer;2024-11

2. Understanding and mitigating climate change impacts on ecosystem health and functionality;Rendiconti Lincei. Scienze Fisiche e Naturali;2024-08-17

3. Target-Aware Image Denoising for Inverse Monte Carlo Rendering;ACM Transactions on Graphics;2024-07-19

4. Conditional Mixture Path Guiding for Differentiable Rendering;ACM Transactions on Graphics;2024-07-19

5. Importance Sampling BRDF Derivatives;ACM Transactions on Graphics;2024-04-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3