Target-Aware Image Denoising for Inverse Monte Carlo Rendering

Author:

Gu Jeongmin1ORCID,Back Jonghee1ORCID,Yoon Sung-Eui2ORCID,Moon Bochang1ORCID

Affiliation:

1. Gwangju Institute of Science and Technology, Gwangju, South Korea

2. Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea

Abstract

Physically based differentiable rendering allows an accurate light transport simulation to be differentiated with respect to the rendering input, i.e., scene parameters, and it enables inferring scene parameters from target images, e.g., photos or synthetic images, via an iterative optimization. However, this inverse Monte Carlo rendering inherits the fundamental problem of the Monte Carlo integration, i.e., noise, resulting in a slow optimization convergence. An appealing approach to addressing such noise is exploiting an image denoiser to improve optimization convergence. Unfortunately, the direct adoption of existing image denoisers designed for ordinary rendering scenarios can drive the optimization into undesirable local minima due to denoising bias. It motivates us to reformulate a new image denoiser specialized for inverse rendering. Unlike existing image denoisers, we conduct our denoising by considering the target images, i.e., specific information in inverse rendering. For our target-aware denoising, we determine our denoising weights via a linear regression technique using the target. We demonstrate that our denoiser enables inverse rendering optimization to infer scene parameters robustly through a diverse set of tests.

Publisher

Association for Computing Machinery (ACM)

Reference35 articles.

1. Attila T. Áfra. 2023. Intel® Open Image Denoise. https://www.openimagedenoise.org.

2. Kernel-predicting convolutional networks for denoising Monte Carlo renderings

3. Martin Balint, Karol Myszkowski, Hans-Peter Seidel, and Gurprit Singh. 2023. Joint Sampling and Optimisation for Inverse Rendering. In SIGGRAPH Asia 2023 Conference Papers (Sydney, NSW, Australia) (SA '23). Article 29, 10 pages.

4. Unbiased warped-area sampling for differentiable rendering

5. Benedikt Bitterli. 2016. Rendering resources. https://benedikt-bitterli.me/resources/.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3