Automatic quantization for physics-based simulation

Author:

Liu Jiafeng1,Shi Haoyang1,Zhang Siyuan1,Yang Yin2,Ma Chongyang3,Xu Weiwei1

Affiliation:

1. Zhejiang University, China

2. Clemson University & University of Utah

3. Kuaishou Technology, China

Abstract

Quantization has proven effective in high-resolution and large-scale simulations, which benefit from bit-level memory saving. However, identifying a quantization scheme that meets the requirement of both precision and memory efficiency requires trial and error. In this paper, we propose a novel framework to allow users to obtain a quantization scheme by simply specifying either an error bound or a memory compression rate. Based on the error propagation theory, our method takes advantage of auto-diff to estimate the contributions of each quantization operation to the total error. We formulate the task as a constrained optimization problem, which can be efficiently solved with analytical formulas derived for the linearized objective function. Our workflow extends the Taichi compiler and introduces dithering to improve the precision of quantized simulations. We demonstrate the generality and efficiency of our method via several challenging examples of physics-based simulation, which achieves up to 2.5× memory compression without noticeable degradation of visual quality in the results. Our code and data are available at https://github.com/Hanke98/AutoQantizer.

Funder

NSF

NSFC

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Reference53 articles.

1. Power diagrams and sparse paged grids for high resolution adaptive liquids

2. Systematically differentiating parametric discontinuities

3. Peter Battaglia , Razvan Pascanu , Matthew Lai , Danilo Jimenez Rezende, et al . 2016 . Interaction networks for learning about objects, relations and physics. In Advances in Neural Information Processing Systems . 4509--4517. Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. 2016. Interaction networks for learning about objects, relations and physics. In Advances in Neural Information Processing Systems. 4509--4517.

4. Projective dynamics

5. Thierry Braconnier and Philippe Langlois. 2002. From rounding error estimation to automatic correction with automatic differentiation. In Automatic Differentiation of Algorithms: From Simulation to Optimization. 351--357. Thierry Braconnier and Philippe Langlois. 2002. From rounding error estimation to automatic correction with automatic differentiation. In Automatic Differentiation of Algorithms: From Simulation to Optimization. 351--357.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3