Affiliation:
1. MIT CSAIL
2. UC Berkeley and MIT CSAIL
Abstract
Emerging research in computer graphics, inverse problems, and machine learning requires us to differentiate and optimize parametric discontinuities. These discontinuities appear in object boundaries, occlusion, contact, and sudden change over time. In many domains, such as rendering and physics simulation, we differentiate the parameters of models that are expressed as integrals over discontinuous functions. Ignoring the discontinuities during differentiation often has a significant impact on the optimization process. Previous approaches either apply specialized hand-derived solutions, smooth out the discontinuities, or rely on incorrect automatic differentiation.
We propose a systematic approach to differentiating integrals with discontinuous integrands, by developing a new differentiable programming language. We introduce integration as a language primitive and account for the Dirac delta contribution from differentiating parametric discontinuities in the integrand. We formally define the language semantics and prove the correctness and closure under the differentiation, allowing the generation of gradients and higher-order derivatives. We also build a system, Teg, implementing these semantics. Our approach is widely applicable to a variety of tasks, including image stylization, fitting shader parameters, trajectory optimization, and optimizing physical designs.
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Graphics and Computer-Aided Design
Reference89 articles.
1. Martín Abadi Ashish Agarwal Paul Barham Eugene Brevdo Zhifeng Chen Craig Citro Greg S. Corrado Andy Davis Jeffrey Dean Matthieu Devin Sanjay Ghemawat Ian Goodfellow Andrew Harp Geoffrey Irving Michael Isard Yangqing Jia Rafal Jozefowicz Lukasz Kaiser Manjunath Kudlur Josh Levenberg Dan Mané Rajat Monga Sherry Moore Derek Murray Chris Olah Mike Schuster Jonathon Shlens Benoit Steiner Ilya Sutskever Kunal Talwar Paul Tucker Vincent Vanhoucke Vijay Vasudevan Fernanda Viégas Oriol Vinyals Pete Warden Martin Wattenberg Martin Wicke Yuan Yu and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Martín Abadi Ashish Agarwal Paul Barham Eugene Brevdo Zhifeng Chen Craig Citro Greg S. Corrado Andy Davis Jeffrey Dean Matthieu Devin Sanjay Ghemawat Ian Goodfellow Andrew Harp Geoffrey Irving Michael Isard Yangqing Jia Rafal Jozefowicz Lukasz Kaiser Manjunath Kudlur Josh Levenberg Dan Mané Rajat Monga Sherry Moore Derek Murray Chris Olah Mike Schuster Jonathon Shlens Benoit Steiner Ilya Sutskever Kunal Talwar Paul Tucker Vincent Vanhoucke Vijay Vasudevan Fernanda Viégas Oriol Vinyals Pete Warden Martin Wattenberg Martin Wicke Yuan Yu and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
2. Aether
3. James Arvo. 1994. The Irradiance Jacobian for Partially Occluded Polyhedral Sources. In SIGGRAPH. 343--350. James Arvo. 1994. The Irradiance Jacobian for Partially Occluded Polyhedral Sources. In SIGGRAPH. 343--350.
4. Unbiased warped-area sampling for differentiable rendering
5. Smooth interpolation of orientations with angular velocity constraints using quaternions
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献