A taxonomy of automatic differentiation pitfalls

Author:

Hückelheim Jan1ORCID,Menon Harshitha2,Moses William3,Christianson Bruce4,Hovland Paul1,Hascoët Laurent5

Affiliation:

1. MCS Division Argonne National Laboratory Lemont Illinois USA

2. CASC Lawrence Livermore National Laboratory Livermore California USA

3. MIT CSAIL Cambridge Massachusetts USA

4. School of Physics, Engineering & Computer Science University of Hertfordshire Hatfield UK

5. Inria Sophia‐Antipolis Team Ecuador Valbonne France

Abstract

AbstractAutomatic differentiation is a popular technique for computing derivatives of computer programs. While automatic differentiation has been successfully used in countless engineering, science, and machine learning applications, it can sometimes nevertheless produce surprising results. In this paper, we categorize problematic usages of automatic differentiation, and illustrate each category with examples such as chaos, time‐averages, discretizations, fixed‐point loops, lookup tables, linear solvers, and probabilistic programs, in the hope that readers may more easily avoid or detect such pitfalls. We also review debugging techniques and their effectiveness in these situations.This article is categorized under: Technologies > Machine Learning

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3