Efficient Code Assignment Techniques for Local Memory on Software Managed Multicores

Author:

Lu Jing1,Bai Ke1,Shrivastava Aviral1

Affiliation:

1. Arizona State University, Tempe, USA

Abstract

Scaling the memory hierarchy is a major challenge when we scale the number of cores in a multicore processor. Software Managed Multicore (SMM) architectures come up as one of the promising solutions. In an SMM architecture, there are no caches, and each core has only a local scratchpad memory [Banakar et al. 2002]. As the local memory usually is small, large applications cannot be directly executed on it. Code and data of the task mapped to each core need to be managed between global memory and local memory. This article solves the problem of efficiently managing code on an SMM architecture. The primary requirement of generating efficient code assignments is a correct management cost model. In this article, we address this problem by proposing a cost calculation graph. In addition, we develop two heuristics CMSM (Code Mapping for Software Managed multicores) and CMSM_advanced that result in efficient code management execution on the local scratchpad memory. Experimental results collected after executing applications from the MiBench suite [Guthaus et al. 2001] demonstrate that merely by adopting the correct management cost calculation, even using previous code assignment schemes, we can improve performance by an average of 12%. Combining the correct management cost model and a more optimized code mapping algorithm together, our heuristics can reduce runtime in more than 80% of the cases, and by up to 20% on our set of benchmarks, compared to the state-of-the-art code assignment approach [Jung et al. 2010]. When compared with Instruction-level Parallelism (ILP) results, CMSM_advanced performs an average of 5% worse. We also simulate the benchmarks on a cache-based system, and find that the code management overhead on SMM core with our code management is much less than memory latency of a cache-based system.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SPECTRUM;ACM Transactions on Embedded Computing Systems;2020-09-30

2. Scratchpad-Memory Management for Multi-Threaded Applications on Many-Core Architectures;ACM Transactions on Embedded Computing Systems;2019-01-31

3. SPECTRUM: a software defined predictable many-core architecture for LTE baseband processing;Proceedings of the 20th ACM SIGPLAN/SIGBED International Conference on Languages, Compilers, and Tools for Embedded Systems - LCTES 2019;2019

4. LMStr;Proceedings of the International Symposium on Memory Systems;2017-10-02

5. Splitting functions in code management on scratchpad memories;Proceedings of the 35th International Conference on Computer-Aided Design;2016-11-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3