Scratchpad-Memory Management for Multi-Threaded Applications on Many-Core Architectures

Author:

Venkataramani Vanchinathan1ORCID,Chan Mun Choon1,Mitra Tulika1

Affiliation:

1. National University of Singapore, Singapore

Abstract

Contemporary many-core architectures, such as Adapteva Epiphany and Sunway TaihuLight, employ per-core software-controlled Scratchpad Memory (SPM) rather than caches for better performance-per-watt and predictability. In these architectures, a core is allowed to access its own SPM as well as remote SPMs through the Network-On-Chip (NoC). However, the compiler/programmer is required to explicitly manage the movement of data between SPMs and off-chip memory. Utilizing SPMs for multi-threaded applications is even more challenging, as the shared variables across the threads need to be placed appropriately. Accessing variables from remote SPMs with higher access latency further complicates this problem as certain links in the NoC may be heavily contended by multiple threads. Therefore, certain variables may need to be replicated in multiple SPMs to reduce the contention delay and/or the overall access time. We present Coordinated Data Management (CDM), a compile-time framework that automatically identifies shared/private variables and places them with replication (if necessary) to suitable on-chip or off-chip memory, taking NoC contention into consideration. We develop both an exact Integer Linear Programming (ILP) formulation as well as an iterative, scalable algorithm for placing the data variables in multi-threaded applications on many-core SPMs. Experimental evaluation on the Parallella hardware platform confirms that our allocation strategy reduces the overall execution time and energy consumption by 1.84× and 1.83× , respectively, when compared to the existing approaches.

Funder

National Research Foundation, Prime Minister?s Office, Singapore under its Industry-IHL Partnership Grant and Huawei International Pte. Ltd.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3