Deep Learning Compensation of Rotation Errors During Navigation Assistance for People with Visual Impairments or Blindness

Author:

Ahmetovic Dragan1ORCID,Mascetti Sergio1,Bernareggi Cristian1,Guerreiro João2,Oh Uran3,Asakawa Chieko2

Affiliation:

1. Università degli Studi di Milano, Milano, Italy

2. Carnegie Mellon University, Pittsburgh, PA, USA

3. Ewha Womans University, Pittsburgh, Seodaemun-gu, Seoul, South Korea

Abstract

Navigation assistive technologies are designed to support people with visual impairments during mobility. In particular, turn-by-turn navigation is commonly used to provide walk and turn instructions, without requiring any prior knowledge about the traversed environment. To ensure safe and reliable guidance, many research efforts focus on improving the localization accuracy of such instruments. However, even when the localization is accurate, imprecision in conveying guidance instructions to the user and in following the instructions can still lead to unrecoverable navigation errors. Even slight errors during rotations, amplified by the following frontal movement, can result in the user taking an incorrect and possibly dangerous path. In this article, we analyze trajectories of indoor travels in four different environments, showing that rotation errors are frequent in state-of-art navigation assistance for people with visual impairments. Such errors, caused by the delay between the instruction to stop rotating and when the user actually stops, result in over-rotation . To compensate for over-rotation, we propose a technique to anticipate the stop instruction so that the user stops rotating closer to the target rotation. The technique predicts over-rotation using a deep learning model that takes into account the user’s current rotation speed, duration, and angle; the model is trained with a dataset of rotations performed by blind individuals. By analyzing existing datasets, we show that our approach outperforms a naive baseline that predicts over-rotation with a fixed value. Experiments with 11 blind participants also show that the proposed compensation method results in lower rotation errors (18.8° on average) compared to the non-compensated approach adopted in state-of-the-art solutions (30.1°).

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,Human-Computer Interaction

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3