GOAL

Author:

Singh Arjun1,Dally William J.1,Gupta Amit K.1,Towles Brian1

Affiliation:

1. Stanford University

Abstract

We introduce a load-balanced adaptive routing algorithm for torus networks, GOAL - Globally Oblivious Adaptive Locally - that provides high throughput on adversarial traffic patterns, matching or exceeding fully randomized routing and exceeding the worst-case performance of Chaos [2], RLB [14], and minimal routing [8] by more than 40%. GOAL also preserves locality to provide up to 4.6× the throughput of fully randomized routing [19] on local traffic. GOAL achieves global load balance by randomly choosing the direction to route in each dimension. Local load balance is then achieved by routing in the selected directions adaptively. We compare the throughput, latency, stability and hot-spot performance of GOAL to six previously published routing algorithms on six specific traffic patterns and 1,000 randomly generated permutations.

Publisher

Association for Computing Machinery (ACM)

Reference19 articles.

1. Tres observaciones sobre el algebra lineal;Birkhoff G.;Univ. Nac. Tucumán Rev. Ser. A,1946

2. The case for chaotic adaptive routing

3. Performance analysis of k-ary n-cube interconnection networks

4. Virtual-channel flow control

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Load-Balancing Routing Algorithms for Reducing Packet Latency and Avoiding Deadlock in Datacenter Interconnection Networks;2022 Tenth International Symposium on Computing and Networking Workshops (CANDARW);2022-11

2. Doughnutie: An efficient and low‐latency cloud data center network architecture;Concurrency and Computation: Practice and Experience;2021-06-04

3. Genetic Node-Mapping Methods for Rapid Collective Communications;IEICE Transactions on Information and Systems;2020-01-01

4. DICA: destination intensity and congestion‐aware output selection strategy for network‐on‐chip systems;IET Computers & Digital Techniques;2019-04-15

5. Internet Anomaly Detection Based on Complex Network Path;IEICE Transactions on Communications;2018-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3