LemurDx

Author:

Arakawa Riku1ORCID,Ahuja Karan1ORCID,Mak Kristie2ORCID,Thompson Gwendolyn3ORCID,Shaaban Sam4ORCID,Lindhiem Oliver3ORCID,Goel Mayank1ORCID

Affiliation:

1. Carnegie Mellon University, Pittsburgh, United States

2. University of Pittsburgh Medical Center, Pittsburgh, United States

3. University of Pittsburgh, Pittsburgh, United States

4. NuRelm, Pittsburgh, United States

Abstract

Hyperactivity is the most dominant presentation of Attention-Deficit/Hyperactivity Disorder in young children. Currently, measuring hyperactivity involves parents' or teachers' reports. These reports are vulnerable to subjectivity and can lead to misdiagnosis. LemurDx provides an objective measure of hyperactivity using passive mobile sensing. We collected data from 61 children (25 with hyperactivity) who wore a smartwatch for up to 7 days without changing their daily routine. The participants' parents maintained a log of the child's activities at a half-hour granularity (e.g., sitting, exercising) as contextual information. Our ML models achieved 85.2% accuracy in detecting hyperactivity in children (using parent-provided activity labels). We also built models that estimated children's context from the sensor data and did not rely on activity labels to reduce parent burden. These models achieved 82.0% accuracy in detecting hyperactivity. In addition, we interviewed five clinicians who suggested a need for a tractable risk score that enables analysis of a child's behavior across contexts. Our results show the feasibility of supporting the diagnosis of hyperactivity by providing clinicians with an interpretable and objective score of hyperactivity using off-the-shelf watches and adding no constraints to children or their guardians.

Funder

Pitt Innovation Challenge Award

National Institute of Mental Health

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Human-Computer Interaction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-stakeholder Perspectives on Mental Health Screening Tools for Children;Proceedings of the CHI Conference on Human Factors in Computing Systems;2024-05-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3