Deadlock avoidance in parallel programs with futures: why parallel tasks should not wait for strangers

Author:

Cogumbreiro Tiago1,Surendran Rishi1,Martins Francisco2,Sarkar Vivek1,Vasconcelos Vasco T.2,Grossman Max1

Affiliation:

1. Rice University, USA

2. University of Lisbon, Portugal

Abstract

Futures are an elegant approach to expressing parallelism in functional programs. However, combining futures with imperative programming (as in C++ or in Java) can lead to pernicious bugs in the form of data races and deadlocks, as a consequence of uncontrolled data flow through mutable shared memory. In this paper we introduce the Known Joins (KJ) property for parallel programs with futures, and relate it to the Deadlock Freedom (DF) and the Data-Race Freedom (DRF) properties. Our paper offers two key theoretical results: 1) DRF implies KJ, and 2) KJ implies DF. These results show that data-race freedom is sufficient to guarantee deadlock freedom in programs with futures that only manipulate unsynchronized shared variables. To the best of our knowledge, these are the first theoretical results to establish sufficient conditions for deadlock freedom in imperative parallel programs with futures, and to characterize the subset of data races that can trigger deadlocks (those that violate the KJ property). From result 2), we developed a tool that avoids deadlocks in linear time and space when KJ holds, i.e., when there are no data races among references to futures. When KJ fails, the tool reports the data race and optionally falls back to a standard deadlock avoidance algorithm by cycle detection. Our tool verified a dataset of ∼2,300 student’s homework solutions and found one deadlocked program. The performance results obtained from our tool are very encouraging: a maximum slowdown of 1.06× on a 16-core machine, always outperforming deadlock avoidance via cycle-detection. Proofs of the two main results were formalized using the Coq proof assistant.

Funder

FCT via LASIGE Research Unit

Luso-American Development Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Language-Agnostic Static Deadlock Detection for Futures;Proceedings of the 29th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming;2024-02-20

2. Disentanglement with Futures, State, and Interaction;Proceedings of the ACM on Programming Languages;2024-01-05

3. Static prediction of parallel computation graphs;Proceedings of the ACM on Programming Languages;2022-01-12

4. An ownership policy and deadlock detector for promises;Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming;2021-02-17

5. Deadlock Avoidance Algorithms for Recursion-Tree Modeled Requests in Parallel Executions;IEEE Transactions on Computers;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3