Reliable communication in the presence of failures

Author:

Birman Kenneth P.1,Joseph Thomas A.1

Affiliation:

1. Cornell Univ., Ithaca, NY

Abstract

The design and correctness of a communication facility for a distributed computer system are reported on. The facility provides support for fault-tolerant process groups in the form of a family of reliable multicast protocols that can be used in both local- and wide-area networks. These protocols attain high levels of concurrency, while respecting application-specific delivery ordering constraints, and have varying cost and performance that depend on the degree of ordering desired. In particular, a protocol that enforces causal delivery orderings is introduced and shown to be a valuable alternative to conventional asynchronous communication protocols. The facility also ensures that the processes belonging to a fault-tolerant process group will observe consistent orderings of events affecting the group as a whole, including process failures, recoveries, migration, and dynamic changes to group properties like member rankings. A review of several uses for the protocols in the ISIS system, which supports fault-tolerant resilient objects and bulletin boards, illustrates the significant simplification of higher level algorithms made possible by our approach.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 445 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Detecting causality in the presence of Byzantine processes: The case of synchronous systems;Information and Computation;2024-12

2. Approaches to Conflict-free Replicated Data Types;ACM Computing Surveys;2024-09-09

3. Decentagram: Highly-Available Decentralized Publish/Subscribe Systems;2024 54th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN);2024-06-24

4. Invited Paper: Causal Mutual Byzantine Broadcast;Proceedings of the 2024 Workshop on Advanced Tools, Programming Languages, and PLatforms for Implementing and Evaluating algorithms for Distributed systems;2024-06-17

5. An in-depth and insightful exploration of failure detection in distributed systems;Computer Networks;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3