The essence of online data processing

Author:

Dexter Philip1ORCID,Liu Yu David1ORCID,Chiu Kenneth1ORCID

Affiliation:

1. SUNY Binghamton, USA

Abstract

Data processing systems are a fundamental component of the modern computing stack. These systems are routinely deployed online: they continuously receive the requests of data processing operations, and continuously return the results to end users or client applications. Online data processing systems have unique features beyond conventional data processing, and the optimizations designed for them are complex, especially when data themselves are structured and dynamic. This paper describes DON Calculus, the first rigorous foundation for online data processing. It captures the essential behavior of both the backend data processing engine and the frontend application, with the focus on two design dimensions essential yet unique to online data processing systems: incremental operation processing (IOP) and temporal locality optimization (TLO). A novel design insight is that the operations continuously applied to the data can be defined as an operation stream flowing through the data structure, and this abstraction unifies diverse designs of IOP and TLO in one calculus. DON Calculus is endowed with a mechanized metatheory centering around a key observable equivalence property: despite the significant non-deterministic executions introduced by IOP and TLO, the observable result of DON Calculus data processing is identical to that of conventional data processing without IOP and TLO. Broadly, DON Calculus is a novel instance in the active pursuit of providing rigorous guarantees to the software system stack. The specification and mechanization of DON Calculus provide a sound base for the designers of future data processing systems to build upon, helping them embrace rigorous semantic engineering without the need of developing from scratch.

Funder

NSF

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stream Types;Proceedings of the ACM on Programming Languages;2024-06-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3