Stream Types

Author:

Cutler Joseph W.1ORCID,Watson Christopher1ORCID,Nkurumeh Emeka2ORCID,Hilliard Phillip1ORCID,Goldstein Harrison1ORCID,Stanford Caleb3ORCID,Pierce Benjamin C.1ORCID

Affiliation:

1. University of Pennsylvania, Philadelphia, USA

2. California Institute of Technology, Pasadena, USA

3. University of California at Davis, Davis, USA

Abstract

We propose a rich foundational theory of typed data streams and stream transformers, motivated by two high-level goals. First, the type of a stream should be able to express complex sequential patterns of events over time. And second, it should describe the internal parallel structure of the stream, to support deterministic stream processing on parallel and distributed systems. To these ends, we introduce stream types , with operators capturing sequential composition, parallel composition, and iteration, plus a core calculus λ ST of transformers over typed streams that naturally supports a number of common streaming idioms, including punctuation, windowing, and parallel partitioning, as first-class constructions. λ ST exploits a Curry-Howard-like correspondence with an ordered variant of the Logic of Bunched Implication to program with streams compositionally and uses Brzozowski-style derivatives to enable an incremental, prefix-based operational semantics. To illustrate the programming style supported by the rich types of λ ST , we present a number of examples written in Delta, a prototype high-level language design based on λ ST .

Publisher

Association for Computing Machinery (ACM)

Reference78 articles.

1. Daniel J Abadi, Yanif Ahmad, Magdalena Balazinska, Uğur Çetintemel, Mitch Cherniack, Jeong-Hyon Hwang, Wolfgang Lindner, Anurag Maskey, Alex Rasin, Esther Ryvkina, Nesime Tatbul, Ying Xing, and Stanley Zdonik. 2005. The Design of the Borealis Stream Processing Engine. In Second Biennial Conference on Innovative Data Systems Research (CIDR).

2. Aurora: a new model and architecture for data stream management

3. Rajeev Alur Phillip Hilliard Zachary G Ives Konstantinos Kallas Konstantinos Mamouras Filip Niksic Caleb Stanford Val Tannen and Anton Xue. 2021. Synchronization Schemas. Invited contribution Principles of Database Systems.

4. NetKAT

5. Arvind Arasu, Brian Babcock, Shivnath Babu, John Cieslewicz, Mayur Datar, Keith Ito, Rajeev Motwani, Utkarsh Srivastava, and Jennifer Widom. 2004. STREAM: The Stanford Data Stream Management System. Stanford InfoLab.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3