Writing Reusable Code Feedback at Scale with Mixed-Initiative Program Synthesis

Author:

Head Andrew1,Glassman Elena1,Soares Gustavo2,Suzuki Ryo3,Figueredo Lucas4,D'Antoni Loris5,Hartmann Björn1

Affiliation:

1. University of California, Berkeley, Berkeley, CA, USA

2. Federal University of Campina Grande & University of California, Berkeley, Campina Grande, Brazil

3. University of Colorado Boulder, Boulder, CO, USA

4. Federal University of Campina Grande, Campina Grande, Brazil

5. University of Wisconsin-Madison, Madison, WI, USA

Funder

NSF

Publisher

ACM

Reference23 articles.

1. Susan A. Ambrose Michael W. Bridges Michele DiPietro Marsha C. Lovett and Marie K. Norman. 2010. How learning works: Seven research-based principles for smart teaching. John Wiley & Sons. Susan A. Ambrose Michael W. Bridges Michele DiPietro Marsha C. Lovett and Marie K. Norman. 2010. How learning works: Seven research-based principles for smart teaching. John Wiley & Sons.

2. How Can Automatic Feedback Help Students Construct Automata?

3. Emergent, crowd-scale programming practice in the IDE

4. Foobaz

5. Learnersourcing Personalized Hints

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. TriviaHG: A Dataset for Automatic Hint Generation from Factoid Questions;Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval;2024-07-10

2. Forums, Feedback, and Two Kinds of AI: A Selective History of Learning @ Scale;Proceedings of the Eleventh ACM Conference on Learning @ Scale;2024-07-09

3. Propagating Large Language Models Programming Feedback;Proceedings of the Eleventh ACM Conference on Learning @ Scale;2024-07-09

4. CFlow: Supporting Semantic Flow Analysis of Students' Code in Programming Problems at Scale;Proceedings of the Eleventh ACM Conference on Learning @ Scale;2024-07-09

5. Non-Expert Programmers in the Generative AI Future;Proceedings of the 3rd Annual Meeting of the Symposium on Human-Computer Interaction for Work;2024-06-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3