ContextAiDe

Author:

Pore Madhurima1,Chakati Vinaya1,Banerjee Ayan1,Gupta Sandeep K. S.1

Affiliation:

1. IMPACT Lab, Arizona State University, Tempe, AZ

Abstract

Mobile crowd-sensing (MCS) enables development of context-aware applications by mining relevant information from a large set of devices selected in an ad hoc manner. For example, MCS has been used for real-time monitoring such as Vehicle ad hoc Networks-based traffic updates as well as offline data mining and tagging for future use in applications with location-based services. However, MCS could be potentially used for much more demanding applications such as real-time perpetrator tracking by online mining of images from nearby mobile users. A recent example is tracking the miscreant responsible for the Boston bombing. We present a new design approach for tracking using MCS for such complex processing in real time. Since MCS applications assume an unreliable underlying computational platform, most typically sample size for recruited devices is guided by concerns such as fault tolerance and reliability of information. As the real-time requirements get stricter coupled with increasing complexity of data-mining approaches, the communication and computation overheads can impose a very tight constraint on the sample size of devices needed for realizing real-time operation. This results in trade-off in acquiring context-relevant data and resource usage incurred while the real-time operation requirements get updated dynamically. Such effects have not been properly studied and optimized to enable real-time MCS applications such as perpetrator tracking. In this article, we propose ContextAiDe architecture, a combination of API, middleware, and optimization engine. The key innovation in ContextAiDe is context-optimized recruitment for execution of computation- and communication-heavy MCS applications in edge environment. ContextAiDe uses a notion of two types of contexts, exact (hard constraints), which have to be satisfied, and preferred (soft constraints), which may be satisfied to a certain degree. By adjusting the preferred contexts, ContextAiDe can optimize the operational overheads to enable real-time operation. ContextAiDe provides an API to specify contexts requirements and the code of MCS app, offload execution environment, a middleware that enables context-optimized and a fault-tolerant distributed execution. ContextAiDe evaluation using a real-time perpetrator tracking application shows reduced energy consumption of 37.8%, decrease in data transfer of 24.8%, and 43% less time compared to existing strategy. In spite of a small increase in the minimum distance from the perpetrator, iterations of optimization tracks the perpetrator successfully. Pro-actively learning the context and using stochastic optimization strategy minimizes the performance degradation caused due to uncertainty (<20%) in usage-dependent contexts.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3