RF-ray

Author:

Ding Han1,Zhai Linwei2,Zhao Cui3,Hou Songjiang1,Wang Ge1,Xi Wei1,Zhao Jizhong1,Gong Yihong2

Affiliation:

1. Xi'an Jiaotong University, School of Computer Science and Technology, Xi'an, China

2. Xi'an Jiaotong University, School of Software and Engineering, Xi'an, China

3. Xi'an Jiaotong University, School of Cyber Science and Engineering, Xi'an, China

Abstract

This paper presents a non-invasive design, namely RF-ray, to recognize the shape and material of an object simultaneously. RF-ray puts the object approximate to an RFID tag array, and explores the propagation effect as well as coupling effect between RFIDs and the object for sensing. In contrast to prior proposals, RF-ray is capable to recognize unseen objects, including unseen shape-material pairs and unseen materials within a certain container. To make it real, RF-ray introduces a sensing capability enhancement module and leverages a two-branch neural network for shape profiling and material identification respectively. Furthermore, we incorporate a Zero-Shot Learning based embedding module that incorporates the well-learned linguistic features to generalize RF-ray to recognize unseen materials. We build a prototype of RF-ray using commodity RFID devices. Comprehensive real-world experiments demonstrate our system can achieve high object recognition performance.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Human-Computer Interaction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Wireless Self-Service System for Library Using Commodity RFID Devices;IEEE Internet of Things Journal;2024-02-01

2. RSSI Fluctuation Analysis for RFID Tagged and Untagged Liquid Object;2023 4th International Conference on Information Science, Parallel and Distributed Systems (ISPDS);2023-07-14

3. Fusang: Graph-inspired Robust and Accurate Object Recognition on Commodity mmWave Devices;Proceedings of the 21st Annual International Conference on Mobile Systems, Applications and Services;2023-06-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3